Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor

نویسندگان

  • Yazhong Chen
  • Yuzhong Wang
  • Hengyong Xu
  • Guoxing Xiong
چکیده

Ultra-thin, high performance composite palladium membrane, developed via a novel electroless plating method, was applied to construct a membrane reactor for methane steam reforming reaction, which was investigated under the following working conditions: temperature 723–823 K, pressure 300–900 kPa, gas hourly space velocity (GHSV) 4000–8000 mL g 1 cat h , steam-to-carbon feed ratio (S/C, mol/mol) 2.5–3.5 and sweep ratio (defined as the ratio between flux of sweep gas to that of methane at the inlet of catalyst bed) 0–4.3. In contrast with previous investigations using commercial catalysts activated at lower temperatures, the catalyst applied in this work was a nickel-based one pre-reduced at 1023 K. The results indicated that selective removal of H2 from reaction zone obtained methane conversion much higher than thermodynamic control ones and CO selectivity significantly lower than thermodynamic control values. For instance, 98.8% methane conversion, over 97.0% selectivity to CO2 and over 95.0% H2 recovery rate could be obtained under mild working conditions. The much higher performance of membrane reactor was attributed to the combination of hydrogen ultra-permeable Pd-based membrane, highly active catalyst for methane steam reforming with countercurrent sweep gas flux design. Further work on stability investigation may develop an efficient onsite route of hydrogen production for application to proton exchange membrane fuel cells. # 2007 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

Methane and Methanol Steam Reforming in a Membrane Reactor for Efficient Hydrogen Production and Continuous Fuel Cell Operation

Our goal in this paper is the description and analysis of new findings and results on membrane reactors and catalytic reactors/heterogeneous processors for the steam reforming reactions of methane, natural gas, and methanol for use in power generation systems and fuel cells. The current communication continues this research by giving emphasis in the so-called “Improved Reaction” and “ReformingF...

متن کامل

Simulating and Optimizing Hydrogen Production by Low-pressure Autothermal Reforming of Natural Gas using Non-dominated Sorting Genetic Algorithm-II

Environmental considerations will probably change automobile fuels from gasoline and gas-oil to hydrogen (as fuel cell) in the future. Problems of fossil fuels include producing gaseous pollutants, such as NOx, CO, and even SO2 (from incomplete-hydrotreated fuels), which need catalytic converters and greenhouse gas emission (such as CO2, CH4, N2O) from the exhaust with a drastic effect on globa...

متن کامل

Advanced Membrane Reactors in Energy Systems A Carbon-Free Conversion of Fossil Fuels

The purpose of this project is to develop hydrogen and CO2 selective membranes to allow combination of natural gas reforming with H2 or CO2 separation in separation enhanced reactors, i.e. membrane reactors, for carbon-free hydrogen production or electricity generation. To achieve this, the project comprises three distinct tasks: system and reactor analysis, membrane materials research and cata...

متن کامل

Cyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor

Hydrogen can be produced for fuel cell applications by using methanol steam reforming reaction. In this article, a method was developed for regeneration of accelerated deactivated methanol-steam-reforming catalyst. Successive deactivation–regeneration cycles were studied in a 250 hours test for the first time including 6 regeneration cycles. It is shown that regeneration of the catalyst in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007